29. September 2021

FFoQSI verbessert die Stabilität von Kräutern durch Algorithmen

Aufgrund ihrer geringen Höhe und der Nähe zum Boden sind Kräuter anfällig für Kontaminationen mit Mikroorganismen. Zudem sind sie zahlreichen Umwelteinflüssen ausgesetzt, was zu starken Qualitätsschwankungen und hohen Weiterverarbeitungskosten führt.

Die Österreichische Bergkräutergenossenschaft, eine Kooperative innovativer Landwirte im oberösterreichischen Mühlviertel für den Anbau und Verkauf von Kräutern aus kontrolliert biologischer Landwirtschaft wagte den Versuch, mit Hilfe angewandter Statistik und maschinellen Lernens im Rahmen eines Projektes mit FFoQSI und der Bioinformatics Research Group der FH OÖ in Hagenberg, diese Qualitätsschwankungen besser in den Griff zu bekommen. Als Grundlage dienten die von den etwa 60 Mitgliedern der Genossenschaft erhobenen und zur Verfügung gestellten Daten.

Einerseits waren das über 100 Parameter zu Anbau, Ernte und Trocknung jeder Charge, wie z.B. Bedingungen beim Anpflanzen, Art und Anzahl der Bodenbearbeitungsschritte, Art und Applikationen von Düngemitteln, Bedingungen bei der Ernte und die Trocknungsparameter, anderseits wurde zusätzlich jede Charge in einem Labor auf mikrobielle Belastung z.B. mit Hefen, Schimmelpilzen oder Krankheitserregern wie Salmonellen untersucht. Alle diese Daten wurden für jede Charge jedes Rohstoffes gesammelt.

Um das Risiko mikrobieller Verkeimung in zukünftigen Chargen vorhersagen zu können, wurden verschiedene Algorithmen des maschinellen Lernens verwendet, wie z.B. Random Forests, Gradient Boosting Trees, künstliche neuronale Netze oder symbolische Regression.

Darüber hinaus konnten mit angewandter Statistik und Hypothesentests die relevantesten Parameter für eine hohe mikrobielle Kontamination identifiziert werden. Somit können den Landwirten konkrete Handlungsempfehlungen zur Reduktion der mikrobiellen Belastung gegeben werden.

Kommuniziert werden alle diese Aspekte über eine Web-Anwendung, die sowohl dem Erfassen neuer Daten, als auch der Präsentation der Auswertungen für die Landwirte dient. Die Anwendung wurde im Zuge ihrer Entwicklung über mehrere Feedback-Meetings laufend an die Bedürfnisse der Landwirte angepasst.

Wirkungen und Effekte

Das in diesem Projekt entwickelte Informationssystem schafft sowohl für die Genossenschaft als auch die Mitgliedsbetriebe höhere Transparenz durch verbessertes Monitoring der Daten. Durch die Analyse großer Datenbestände aus unterschiedlichen Quellen mit maschinellem Lernen ist es gelungen, Zusammenhangs- und Prognosemodelle zu identifizieren.

Dies führt zu einem besseren Verständnis der Prozesse, einer verringerten mikrobiellen Belastung und damit zu einer Steigerung der Produktsicherheit und Lagerfähigkeit der hergestellten Kräuter.

(c) iStock / alle12